Wednesday, July 17, 2024
HomeFrontpageMelanoma, the deadliest skin cancer, does not fit the model

Melanoma, the deadliest skin cancer, does not fit the model

by the University of Michigan

ANN ARBOR, Mich.— One of the most promising new ideas about the causes of cancer, known as the cancer stem-cell model, must be reassessed because it is based largely on evidence from a laboratory test that is surprisingly flawed when applied to some cancers, University of Michigan researchers have concluded.

By upgrading the lab test, the U-M scientists showed that melanoma—the deadliest form of skin cancer—does not follow the conventional cancer stem-cell model, as prior reports had suggested.

The findings, to be published as the cover article in the Dec. 4 edition of ­Nature, also raise questions about the model’s application to other cancers, said Sean Morrison, director of the Center for Stem Cell Biology at the U-M Life Sciences Institute.

“I think the cancer stem-cell model will, in the end, hold up for some cancers,” Morrison said. “But other cancers, like melanoma, probably won’t follow a cancer stem-cell model at all. The field will have to be reassessed after more time is spent to optimize the methods used to detect cancer stem cells.”

The cancer stem-cell model has steadily gained supporters over the last decade. It states that a handful of rogue stem cells drive the formation and growth of malignant tumors in many cancers. Proponents of the controversial idea have been pursuing new treatments that target these rare stem cells, instead of trying to kill every cancer cell in a patient’s body.

But in a series of experiments involving human melanoma cells transplanted into mice, Morrison’s team found that the tumor-forming cells aren’t rare at all. They’re quite common, infact, but standard laboratory tests failed to detect most of them.

Scientists previously estimated that only one in 1 million melanoma cells has the ability to run wild, exhibiting the kind of unchecked proliferation that leads to new tumors. These aggressive interlopers are the cancer stem cells, according to backers of the model.

But after updating and improving the laboratory tests used to detect these aberrant cells, Morrison’s team determined that at least one-quarter of melanoma cells are “tumorigenic,” meaning they have the ability to form new tumors. The laboratory tests are known as assays.

“The assay on which the field is based misses most of the cancer cells that can proliferate to form tumors,” Morrison said. “Our data suggest that it’s not going to be possible to cure melanoma by targeting a small sub-population of cells.”

Melanoma kills more than 8,000 Americans each year. The human melanoma cells used in the mouse experiments were provided—with the patients’ consent—by a team from the U-M’s Multidisciplinary Melanoma Program, one of the country’s largest melanoma programs and part of the U-M Comprehensive Cancer Center.

“People were looking to the cancer stem-cell model as an exciting new source for the development of life-saving cures for advanced melanoma,” said Dr. Timothy Johnson, director of the U-M melanoma program and a co-author of the Nature paper. “Unfortunately, our results show that melanoma does not strictly follow this model.

RELATED ARTICLES
- Advertisment -spot_img
- Advertisment -spot_img