Sunday, November 24, 2024
HomeFrontpageNew battery could change the world: Ceramatec sodium-sulphur battery

New battery could change the world: Ceramatec sodium-sulphur battery

Sent by Earl Koskella

Interesting new battery with tremendous potential: In a modest building on the west side of Salt Lake City, a team of specialists in advanced materials and electrochemistry has produced what could be the single most important breakthrough for clean, alternative energy since Socrates first noted solar heating 2,400 years ago.

The prize is the culmination of 10 years of research and testing — a new generation of deep-storage battery that’s small enough, and safe enough, to sit in your basement and power your home.

It promises to nudge the world to a paradigm shift as big as the switch from centralized mainframe computers in the 1980s to personal laptops. But this time the mainframe is America’s antiquated electrical grid; and the switch is to personal power stations in millions of individual homes.

Inside Ceramatec’s wonder battery is a chunk of solid sodium metal mated to a sulphur compound by an extraordinary, paper-thin ceramic membrane. The membrane conducts ions — electrically charged particles — back and forth to generate a current. The company calculates that the battery will cram 20 to 40 kilowatt hours of energy into a package about the size of a refrigerator, and operate below 90 degrees C.

This may not startle you, but it should. It’s amazing. The most energy-dense batteries available today are huge bottles of super-hot molten sodium, swirling around at 600 degrees or so. At that temperature the material is highly conductive of electricity but it’s both toxic and corrosive. You wouldn’t want your kids around one of these.

The essence of Ceramatec’s breakthrough is that high energy density (a lot of juice) can be achieved safely controversiaat normal temperatures and with solid components, not hot liquid.

Ceramatec says its new generation of battery would deliver a continuous flow of 5 kilowatts of electricity over four hours, with 3,650 daily discharge/recharge cycles over 10 years. With the batteries expected to sell in the neighborhood of $2,000, that translates to less than 3 cents per kilowatt hour over the battery’s life. Conventional power from the grid typically costs in the neighborhood of 8 cents per kilowatt hour.

Re-read that last paragraph and let the information really sink in. Five kilowatts over four hours — how much is that? Imagine your trash compactor, food processor, vacuum cleaner, stereo, sewing machine, one surface unit of an electric range and thirty-three 60-watt light bulbs all running nonstop for four hours each day before the house battery runs out. That’s a pretty exciting place to live.

And then you recharge. With a projected 3,650 discharge/recharge cycles — one per day for a decade — you leave the next-best battery in the dust. Deep-cycling lead/acid batteries like the ones used in RVs are only good for a few hundred cycles, so they’re kaput in a year or so.

How do you recharge? By tapping your solar panels or windmills. It’s just like plugging in your cell phone or iPod, only you plug in your house.

A small three-bedroom home in Provo might average, say, 18 kWh of electric consumption per day in the summer — that’s 1,000 watts for 18 hours. A much larger home, say five bedrooms in the Grandview area, might average 80 kWh, according to Provo Power. Either way, a supplement of 20 to 40 kWh per day is substantial. If you could produce that much power in a day — for example through solar cells on the roof — your power bills would plummet.

­Ceramatec’s battery breakthrough now makes that possible.

Clyde Shepherd of Alpine is floored by the prospect. He recently installed the second of two windmills on his property that are each rated at 2.4 kilowatts continuous output. He’s searching for a battery system that can capture and store some of that for later use when it’s calm outside, but he hasn’t found a good solution.

“This changes the whole scope of things and would have a major impact on what we’re trying to do,” Shepherd said. “Something that would provide 20 kilowatts would put us near 100 percent of what we would need to be completely independent.

It would save literally thousands of dollars a year.”

Taken from the Daily Herald article authored by Randy Wright.

RELATED ARTICLES
- Advertisment -spot_img
- Advertisment -spot_img
- Advertisment -spot_img